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Abstract. Due to its ability to incorporate and leverage time infor-
mation in relational data, Temporal Knowledge Graph (TKG) learning
has become an increasingly studied research �eld. To predict the future
based on TKG, researchers have presented innovative methods for Tem-
poral Knowledge Graph Forecasting. However, the experimental proce-
dures employed in this research area exhibit inconsistencies that signi�-
cantly impact empirical results, leading to distorted comparisons among
models. This paper focuses on the evaluation of TKG Forecasting mod-
els: We examine the evaluation settings commonly used in this research
area and highlight the issues that arise. To make di�erent approaches
to TKG Forecasting more comparable, we propose a uni�ed evaluation
protocol and apply it to re-evaluate state-of-the-art models on the most
commonly used datasets. Ultimately, we demonstrate the signi�cant dif-
ference in results caused by di�erent evaluation settings. We believe this
work provides a solid foundation for future evaluations of TKG Fore-
casting models, thereby contributing to advancing this growing research
area.

Keywords: Temporal Knowledge Graphs · Temporal Graphs · Tempo-
ral Knowledge Graph Forecasting

1 Introduction

Temporal Knowledge Graphs (TKG) are Knowledge Graphs (KG) where facts
occur, recur or evolve over time [29]. TKG can accommodate time-evolving multi-
relational data by extending facts with a timestamp to indicate that a triple is
valid at this timestamp [7]. The research �eld of TKG Forecasting, or TKG
Extrapolation, aims at predicting facts at future timesteps, based on the KG
history [27]. Recently, various methods have been proposed to advance the �eld
([13], [19], [8], [7], [17], [18], [27], [31]).
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Unfortunately, and despite the progress made so far in TKG Forecasting, var-
ious reported experimental settings show discrepancies: �rst, the existing models
are evaluated on scores computed with di�erent �lter settings; second, models
for single-step prediction that predict one step to the future are lumped together
with models for multi-step prediction that predict multiple steps to the future;
third, multiple versions of the same datasets exist. Last but not least, some mod-
els do use the information from the validation set for testing, whereas others do
not. These four issues can strongly in�uence the empirical results and signif-
icantly decrease comparability across works. As an example, the best results
in single-step setting are in average 6% better than the best results in multi-
step setting. Consequently, it is very di�cult to understand existing methods'
strengths or weaknesses or to identify the currently best-performing method.

In this paper, we address the aforementioned issues in the evaluation of
TKG Forecasting models. We �rst provide an overview of existing models for
TKG Forecasting (Section 2). We then describe common evaluation settings and
compare those settings utilized in state-of-the-art approaches to highlight the
inconsistencies (Section 5). In this context, we explain the problems we discov-
ered for each setting. As it is essential to evaluate models in a consistent way,
we propose a uni�ed evaluation protocol using reasonable and sound evaluation
settings (Section 4). We re-evaluate state-of-the-art models on this protocol and
show results for eight state-of-the-art models on �ve commonly used datasets
(Section 5). In addition, we provide insights into the in�uence of di�erent setups
on the result scores. We hope to set a new standard for rigorous evaluations of
new models in this growing research �eld. Our contributions are:

1. A comprehensive discussion of evaluation settings and accompanying prob-
lems for TKG Forecasting.

2. The design of a uni�ed evaluation protocol for TKG Forecasting from rea-
sonable evaluation settings.

3. An extensive re-evaluation of state-of-the-art models on a consistent eval-
uation protocol, showing results and insights on the in�uence of di�erent
evaluation settings on these results.

Our work does not question the methods for TKG Forecasting developed by
individual researchers. Instead, it aims at giving a fresh view on the state of the
�eld as a whole and provides a solid basis for working on remaining problems.

2 Terminology and Related Work

2.1 Terminology

A TKG is formalized as a sequence of timestamped Knowledge Graphs, G =
(G1, G2, ..., Gt, ...). A timestamped KG Gt = {V,R, Et}, or KG snapshot, de-
scribes the TKG at timestep t, with the set of entities V, the set of relations R,
and the set of facts Et at discrete timestamp t. Facts Et are quadruples (s, r, o, t),
with s, o,∈ V, and r ∈ R, for example (Kamala Harris, visit, France, 2021-11-
10). Entity prediction for TKG Forecasting is the task of predicting the missing
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object entity (s, r, ?, t + k) and subject entity (?, r, o, t + k) for a query, with
k ∈ N+. [19]

2.2 Related Work on Temporal Knowledge Graph Forecasting

In recent years (2017-2022), researchers have proposed various methods for TKG
Forecasting:

Graph Neural Networks (GNNs): A large group of models leverages a
GNN [25, 23] in combination with a sequential approach to integrate the struc-
tural and sequential information. RE-Net [13] applies an autoregressive archi-
tecture. It learns the temporal dependency from a sequence of graphs and the
local structural dependency from the neighborhood. The occurrence of a fact
is modeled as a probability distribution conditioned on the temporal sequence
of past snapshots. RE-Net can predict full graphs. RE-GCN [19] also models
the sequence of the Knowledge Graph snapshots recurrently. For this, it com-
bines a convolutional graph Neural Network with a sequential Neural Network
model. Further, RE-GCN introduces a static graph constraint to take into ac-
count additional information like entity types. TANGO [8] bases on neural or-
dinary di�erential equations to model the temporal sequences combined with a
GNN to capture the structural information. In addition, the authors introduce
a stochastic jump method to incorporate stochastic events, i.e., triples appear-
ing or disappearing over time. xERTE [7] bases on so-called temporal relational
attention mechanisms. To answer a query, it extracts query-relevant subgraphs.
Further, it computes and propagates attention scores to identify the relevant
evidence in the subgraphs, using a modi�ed time-aware version of a message
passing. CEN [17] integrates a Convolutional Neural Network which can handle
evolutional patterns of di�erent lengths via a learning strategy that learns these
evolutional patterns from short to long. The model can learn in an online setting,
meaning that it is updated with historical facts during testing.

Reinforcement Learning: CluSTeR [18] introduces a two-step process:
First, a Reinforcement Learning agent, working with randomized beam strategy,
searches and induces clue paths related to a given query. Second, an adapted
GNN and sequence method models temporal information among the clues to
�nd answers to a query. TimeTraveler [27] leverages a Reinforcement Learning
model based on temporal paths. Starting from the query's subject node, the
agent traverses outgoing edges across graph snapshots. For this, TimeTraveler
samples actions according to transition probabilities, which are based on dy-
namic embeddings of the query, the path history, and the candidate actions.
TimeTraveler uses a time-shaped reward based on Dirichlet distribution [14].
The model is able to predict in the inductive setting.

Rule-based Approaches: TLogic [21], a symbolic framework, learns so-
called temporal logic rules via temporal random walks, traversing edges through
the graph backward in time. TLogic applies the rules to events that happened
prior to the query. For scoring the answer candidates, it takes into account the
rules' con�dence as well as time di�erences.
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Other: CyGNet [31] predicts future facts purely based on the appearance
of historical facts. For this, to answer a query, it �rst computes each entity's
embedding vector. Further, using these embeddings, it computes entity proba-
bilities by combining predictions from a so-called "copy mode" that computes
probabilities for historical events based on the repetition of facts in history and
a "generation mode" that computes probabilities for every entity.

In our work, we analyze the evaluation discrepancies of the introduced models
and evaluate the models on a joint evaluation protocol.

In addition to the described methods, there are also approaches focusing on a
slightly di�erent problem setting. We exclude these from our evaluation, but list
them below for completeness: Know-Evolve [29] and the Graph Hawkes Neural
Network (GHNN) [9] utilize temporal point processes to estimate conditional
probabilities of future facts in a continuous time setting. Unlike the other meth-
ods discussed in this section, Know-Evolve and GHNN allow scenarios where
no facts occur at the same timestamp [19]. Due to their distinct problem set-
ting, where continuous time is considered, these works are not included in our
evaluation.

2.3 Related Work on the Evaluation of Graph-based Machine
Learning Models

When conducting empirical evaluations of Machine Learning algorithms, various
issues can arise [20]. Such problems have been reported and partially addressed
in various sub�elds, but in the following, we limit the discussion to works in the
�eld of Graph Machine Learning. [26] describe the shortcomings of evaluation
strategies for Graph Neural Network models for node classi�cation. [5] focus on
graph classi�cation, providing standard practices that should be avoided for a
fair comparison. Further, [24] and [28] describe shortcomings in the evaluation of
KG link prediction. [11] focus on the evaluation of models for TKG completion
(not Forecasting). Our work is the �rst to study evaluation problems for TKG
Forecasting.

3 Description of Evaluation Settings and Evaluation

Problems

In this chapter, we subsequently focus on evaluation settings for TKG Fore-
casting. In each subsection, we �rst describe a setting, and second, describe
problems that we have encountered in that setting. In addition, Table 1, pro-
vides an overview, showing the settings each model uses by default. We refer to
the respective parts of the table in each subsection. Further, the table contains
links to the published code for each model, if available.
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3.1 Filter Settings for link prediction metrics

Researchers in TKG Forecasting evaluate the models on metrics known from
static link prediction, namely Mean Reciprocal Rank (MRR) and Hits@k, with
k = 1, 3, 10. There are three settings which have been introduced subsequently,
raw, static �lter, and time-aware �lter :

Raw : As introduced by [2], for each test triple (stest, rtest, otest), remove the
object (stest, rtest, ?), and compute the score that the model assigns for each
entity v ∈ V to be the object in that triple, where the set of all possible triples
(stest, rtest, v) is termed corrupted triples. Sort the scores in descending order,
and note the rank of the correct entity otest. Repeat this by removing the subject
(?, rtest, otest). The MRR is the mean of the reciprocal of these ranks across all
queries from the test set, and Hits@k is the proportion of correct entities ranked
in the top k.

Static �lter : To avoid counting higher ranks from other valid predictions as
errors and thus having �aws in the metrics, [1] propose to remove all triples
(except the triple of interest) that appear in the train, valid, and test set from
the list of corrupted triples.

Time-aware �lter : [10] note that the static �lter setting is inappropriate for
temporal link prediction because it �lters out all triples that have ever appeared
from the list of corrupted triples, ignoring the time validity of facts. As a conse-
quence, it does not consider predictions of such triples as erroneous. For example,
if there is a test query (Barack Obama, visit, India, 2015-01-25) and if the train
set contains (Barack Obama, visit, Germany, 2013-01-18), the triple (Barack
Obama, visit, Germany) is �ltered out for the test query according to the static
�lter setting, even though it is not true for 2015-01-25 [7]. For this reason, nu-
merous works [7, 21, 8, 27, 17, 18] apply the time-aware �lter setting which only
�lters out quadruples with the same timestamp as the test query. In the above
example, (Barack Obama, visit, Germany, t) would only be �ltered out for the
given test query, if it had the timestamp t = 2015-01-25, and otherwise stay in
the list of corrupted triples.

Problem 1: Di�erent Filter Settings. The works introduced in Section 2
do present result scores with MRR and Hits@k using the above-described �lter
settings. However, not all works report results on all �lter settings, which is
a problem, as it decreases comparability across works. Further, as mentioned
above, the raw, and especially the static �lter setting are not appropriate for
TKG Forecasting. The �rst part of Table 1 illustrates the �lter settings that
each model reports.

3.2 Single-step and Multi-step prediction

Methods for Forecasting operate within two distinct prediction settings, single-
step and multi-step prediction. Single-step (or one-step) prediction means that
the model always forecasts the next timestep [4]. The ground truth facts are
then fed before predicting the subsequent timestep. Multi-step prediction means
that the model forecasts more than one future time step [4]. More speci�cally,
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the model predicts all timesteps from the test set, without seeing any ground
truth information in between. As described by [4], multi-step prediction is more
challenging, as the model can only leverage information from its own forecasts,
and uncertainty accumulates with an increasing number of forecasted timesteps.

Problem 2: Comparison of multi-step and single-step setting. The
models described in Section 2 run in di�erent settings. Some can do single-step
prediction only, some can do multi-step prediction only, and some do both (see
Table 1, second part). Still, single-step models are compared to multi-step models
without drawing attention to the di�erent setups. For example, TLogic [21] and
TANGO [8] (single-step) are compared to RE-Net [13] (multi-step), xERTE [7]
is compared to CyGNet [31], and CEN [17] is compared to CyGNet [31] and
RE-Net [13]. The second part of Table 1 shows each model's prediction setting.

3.3 Datasets

Researchers in the domain of TKG Forecasting use the following datasets: Three
instances of ICEWS [3]: ICEWS05-15 [6], ICEWS14 [6], and ICEWS18 [12],
where the numbers mark the respective years; further, YAGO [22] and WIKI [15],
preprocessed according to [12], as well as GDELT [16]. Table 2 shows dataset
statistics for dataset version (a), as reported by [19].

Problem 3: Multiple versions of the same dataset. The models de-
scribed in Section 2 report results on di�erent versions of the same dataset. For
instance, three versions exist for ICEWS14. This hinders the comparability of
results across works, causing confusion and potential errors. The third part of
Table 1 shows an overview of di�erent versions of each dataset, describing each
version (marked with (a), (b), (c)) by the number of training triples. One version
of the ICEWS14 dataset (see Table 1, version (c)) is especially problematic, as it
does not contain a validation set. Instead, the test set is used for both validation
and testing. Thus, with this setting, the test set is leaked during training.

3.4 Train, Validation, and Test Set

Researchers in TKG Forecasting split each dataset D into a training Dtrain, val-
idation Dvalid, and test set Dtest. The model's training is conducted on Dtrain,
not using information contained in Dvalid or Dtest. Dvalid can be used for mon-
itoring the training process, and selecting the best model (parameters) across
epochs. There are di�erent options to use the validation set during testing:
(a) The model can leverage all information from Dtrain, but not from Dvalid, to

predict Dtest. This is consistent with the setting in link prediction for static
knowledge graphs.

(b) The model can leverage all information from Dtrain and from Dvalid, to
predict Dtest. This means, if a model has to answer the query (s, r, ?, n)
during testing, all quadruples from Dtrain and Dvalid can be used. This is
consistent with the setting used in time-series Forecasting.
Problem 4: Usage of Validation set for Testing. For multi-step setting,

during testing, some models (CygNet, TLogic) do not use the information from
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the validation set (option (a)), whereas others (RE-GCN, RE-Net) do use it
(option (b)), see the fourth part of Table 1. Not using the information from the
validation set leads to a signi�cantly harder task, as the model needs to forecast
more steps in the future: Instead of starting to predict the next unknown timestep
t+1 for the �rst test set sample, the model needs to already predict the timestep
t+numvalid +1, with numvalid being the number of timesteps in the validation
set, as an information gap between training and testing.

3.5 Problem Summary

When putting all four problems together, a dramatic picture emerges: results
have been compared using di�erent �lter settings, prediction settings, dataset
versions, and dataset splits. Table 1 illustrates the scattered landscape of eval-
uation settings, where no two models have ever been evaluated on identical
settings. Without a uniform and standardized evaluation protocol, we will never
be able to gauge true progress in the �eld. Still, in existing work, the methods
are compared to each other, leading to confusion and inconsistencies.

4 A uni�ed evaluation protocol

To tackle the problems introduced in Section 5, it is essential to evaluate TKG
models in a consistent way. For this reason, we introduce a uni�ed evaluation
protocol with clear and reproducible choices.3

Filter settings: We report results on the time-aware �lter setting. As ex-
plained in Section 3.1, this setting avoids counting higher ranks from other valid
predictions as errors while taking into account time validity of facts.

Single-step and Multi-Step:While both settings are valid, the comparison
of results for di�erent settings is not fair (see Section 3.2). The setting to be
used depends on the use case and on the methods' capabilities. If the method
can predict in single- and multi-step, we re-evaluate it on both settings.

Datasets Versions: The same dataset versions should be used across works
to ensure comparability. We suggest using version (a) for each dataset (see Ta-
ble 1). We selected the dataset versions used by the authors of RE-GCN [19],
mainly because these are (among) the most commonly used versions across all
works. Table 2 shows dataset statistics.

Train, Validation, and Test Set Usage: We use the train, validation,
and test sets as described in Section 3.4, option (b), where the information from
the validation set can be used for testing, to avoid time gaps between training
and testing. In addition, we make sure that the test set is never used for model
selection and the datasets are split based on ordered timestamps, whereas one
timestamp should not belong to two di�erent sets.

3 The supplementary material also contains a checklist for benchmark experiments in
this �eld.
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Table 1. Methods and their experimental settings: Filter settings (Section 3.1),
settings for single- and multi-step prediction (Section 3.2), dataset versions ((a), (b),
(c)) used in papers (Section 3.3), and validation set usage (Section 3.4). We report
dataset versions by the number of quadruples in the training set. An entry ✓means
that the model reported results on the respective setting, and an entry - that it does
not. An entry args means, that the method provides the option to set this in the args
of the code, but does not report the results in the paper. An entry ? means that we
cannot answer this question, as the code is not publicly available.

Name RE-
GCN

RE-
Net

xER-
TE

CyG-
Net

TLo-
gic

TAN-
GO

Time
Trav-
eler

CEN CluS-
TeR

Filter settings:
raw ✓ ✓ - - - ✓ - - ✓
static - ✓ - ✓ - ✓ - - -
time-aware - - ✓ - ✓ ✓ ✓ ✓ ✓

Prediction settings:
single-step args partlya ✓ - ✓ ✓ ✓ ✓b ?
multi-step ✓ ✓ - ✓ args - - - ?

Datasets:

ICEWS14
(a): 74845 ✓ - - - - - - ✓ ✓
(b): 63685 - - ✓ - ✓ - ✓ - -
(c): 323895 w/o validc - ✓ - ✓ - ✓ - - -

ICEWS18
(a): 373018 y ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ICEWS05-15
(a): 368868 ✓ - - - ✓ - - - ✓
(b): 322958 - - ✓ - - - ✓ - -
(c): 369104 - - - - - ✓ - - -

GDELT
(a): 1734399 ✓ ✓ ✓ - - - - ✓

YAGO
(a): 161540 ✓ ✓ - ✓ - ✓ ✓ - -
(b): 51205 - - ✓ - - - - - -

WIKI
(a): 539286 ✓ ✓ - ✓ - ✓ ✓ ✓ -

Validation Set for Testing:
Use Valid ✓ ✓ ✓ - - ✓ ✓ ✓ ?

Reference [19] [13] [7] [31] [21] [8] [27] [17] [18]
Code Published ✓d ✓e ✓f ✓g ✓h ✓i ✓j ✓k -

a RE-NET published results for the datasets ICEWS18 and GDELT ([13], Table 2, RE-Net w.
GT). The published code does not provide the option to set this in the arguments.

b In addition to providing results for single-step setting, CEN has a so-called "online-setting".
This means, that the model is re-�t after each test timestep before predicting the next timestep.

c This speci�c version of ICEWS14 comes without validation set. Instead, the test set is used
for validation.

d https://github.com/Lee-zix/RE-GCN
e https://github.com/INK-USC/RE-Net
f https://github.com/TemporalKGTeam/xERTE
g https://github.com/CunchaoZ/CyGNet
h https://github.com/liu-yushan/TLogic
i https://github.com/TemporalKGTeam/TANGO
j https://github.com/JHL-HUST/TITer/
k https://github.com/Lee-zix/CEN

https://github.com/Lee-zix/RE-GCN
https://github.com/INK-USC/RE-Net
https://github.com/TemporalKGTeam/xERTE
https://github.com/CunchaoZ/CyGNet
https://github.com/liu-yushan/TLogic
https://github.com/TemporalKGTeam/TANGO
https://github.com/JHL-HUST/TITer/
https://github.com/Lee-zix/CEN
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Table 2. Dataset Statistics for dataset version (a), as reported by [19].

Dataset #Nodes #Rels #Train #Valid #Test Time Interval

ICEWS14 6869 230 74845 8514 7371 24 hours
ICEWS18 23033 256 373018 45995 49545 24 hours
ICEWS0515 10094 251 368868 46302 46159 24 hours
GDELT 7691 240 1734399 238765 305241 15 minutes
YAGO 10623 10 161540 19523 20026 1 year
WIKI 12554 24 539286 67538 63110 1 year

5 Experiments

In the following, we show the results for eight models and �ve datasets4. The sup-
plementary material5 contains additional information on speci�c experimental
settings. Please �nd the source code with scripts for experiments and evaluation
at https://github.com/nec-research/TKG-Forecasting-Evaluation.

We run the experiments on a system with one Nvidia TITAN RTX (24 GB)
GPU, 512 GB Memory, and an Intel Xeon Silver 4208 CPU with 16 cores (32
threads).

To eliminate the four problems described in Section 5, we follow the eval-
uation protocol from Section 4: We report results on time-aware �lter settings
for single-step and multi-step settings, use the dataset versions (a), and report
the results with the validation set usage option (b). We show aggregated results
(mean MRR and Hits@k across all test samples) for the eight models for the
datasets GDELT, YAGO, WIKI, ICEWS14, and ICEWS18 in Table 3. The up-
per part for each dataset contains results in multi-step setting, and the lower part
in single-step setting, where models with results for single-step prediction should
not be benchmarked against methods with results of multi-step prediction. We
mark the best result for each dataset for each setting in bold. In addition, for
the method CEN, we show results in online setting, where the model is updated
continually during testing. For completeness and comparability to related work,
the supplementary material reports results on raw and static �lter settings. In
addition, the supplementary material contains tables with information on the
reproducibility of the results that have been reported by the original works
[7, 27, 13, 19, 8, 21, 31, 17]. Figure 1 shows the MRR for three selected datasets
(ICEWS18, WIKI, and GDELT) over test timestamps (snapshots) for di�erent
evaluation settings. In the following, we will discuss important insights.

Single-step and Multi-step setting: Table 3 shows the di�erence in scores
for single- vs. multi-step setting: Overall, scores for single-step setting are higher

4 Because of memory and runtime issues for multiple models due to its large amount of
timestamps, and its similarity to the other ICEWS datasets, we excluded the dataset
ICEWS05-15. By running the script available in our GitHub repository, interested
readers can include this dataset.

5 Please �nd the supplementary material at https://github.com/nec-research/

TKG-Forecasting-Evaluation/blob/main/paper_supplementary_material.pdf.

https://github.com/nec-research/TKG-Forecasting-Evaluation
https://github.com/nec-research/TKG-Forecasting-Evaluation/blob/main/paper_supplementary_material.pdf
https://github.com/nec-research/TKG-Forecasting-Evaluation/blob/main/paper_supplementary_material.pdf
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Table 3. Experimental results for multi-step prediction, single-step prediction, and
single-step prediction in online setting (with model updates) with datasets GDELT,
YAGO, WIKI (top), and ICEWS14, ICEWS18 (bottom). Results for single-step pre-
diction should not be compared to results for multi-step prediction. We report mean
reciprocal rank (MRR), and Hits@k (H@k), with k = 1, 3, 10 in time-aware �lter set-
ting. The best results for each setting are marked in bold.

multi-step setting (time �lter)

GDELT YAGO WIKI

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RE-GCN 19.64 12.47 20.85 33.62 75.40 71.75 77.67 81.70 62.72 59.48 64.89 67.87
RE-Net 19.71 12.48 20.90 33.93 58.21 53.44 61.31 66.26 49.47 47.21 50.70 53.04
CyGNet 19.08 11.88 20.29 33.07 69.02 61.38 74.29 83.42 58.26 52.51 62.41 67.56
TLogic 17.68 11.26 18.90 30.29 66.93 63.14 70.63 71.58 63.99 61.31 66.36 68.22

single-step setting (time �lter)

GDELT YAGO WIKI

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RE-GCN 19.75 12.51 21.02 33.88 82.20 78.72 84.24 88.48 78.65 74.75 81.71 84.68
xERTE 18.89 12.73 21.09 31.96 87.31 84.20 90.28 91.22 74.52 70.30 78.58 80.13
TLogic 19.77 12.23 21.67 35.62 76.49 74.02 78.91 79.17 82.29 78.62 86.04 87.01
TANGO 19.22 12.19 20.42 32.81 62.39 59.04 64.69 67.75 50.08 48.30 51.41 52.76
Timetraveler 20.23 14.14 22.18 31.17 87.72 84.55 90.87 91.20 78.65 75.15 82.03 83.05
CEN 20.43 12.98 21.81 35.04 82.72 78.81 85.24 89.35 79.29 75.51 82.37 84.91

online setting (single-step with model update) (time �lter)

GDELT YAGO WIKI

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

CEN 21.73 13.80 23.51 37.30 83.96 80.08 86.73 90.24 79.82 75.88 83.14 85.47

multi-step setting (time �lter)

ICEWS14 ICEWS18

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RE-GCN 37.82 27.86 42.14 57.50 29.03 19.52 32.66 47.50
RE-Net 37.00 27.80 40.80 54.92 27.86 18.47 31.43 46.19
CyGNet 36.12 26.66 40.28 54.54 26.01 16.69 29.59 44.43
TLogic 35.48 26.54 39.59 53.11 24.01 15.59 27.23 41.20

single-step setting (time �lter)

ICEWS14 ICEWS18

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RE-GCN 42.11 31.36 47.33 62.66 32.58 22.37 36.78 52.56
xERTE 40.91 33.03 45.48 57.07 29.23 20.92 33.50 46.26
TLogic 42.53 33.20 47.61 60.29 29.59 20.42 33.60 48.05
TANGO 36.77 27.29 40.84 55.09 28.35 19.10 31.88 46.27
Timetraveler 40.83 31.90 45.43 57.59 29.13 21.29 32.54 43.92
CEN 41.80 31.85 46.59 60.87 31.50 21.69 35.40 50.69

online setting (single-step with model update) (time �lter)

ICEWS14 ICEWS18

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

CEN 43.17 33.20 48.03 62.43 31.78 21.82 35.79 51.27
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Fig. 1. MRR (in %) over snapshots from test set (one snapshot is one timestamp) per
method. (a)-(d): Datasets ICEWS18 (a),(b) and WIKI (c),(d) for multi-step prediction
(left) and single-step prediction (right); (e): Using vs. not using the validation set during
testing for dataset WIKI; (f) Di�erent �lter settings for dataset GDELT.

than for multi-step setting. This is especially visible for the two models (TLogic
and RE-GCN) that run in both settings, but also true for the other results.
Figure 1(a) - (d) shows the MRR (in %) over snapshots in multi-step setting
(left) and single-step setting (right).6 The �gure illustrates a contrasting trend

6 The supplementary material shows results for ICEWS14, YAGO, and GDELT.
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between multi-step prediction and single-step prediction with respect to MRR.
Speci�cally, the MRR for multi-step prediction exhibits a decreasing pattern
as the timestamps increase, whereas single-step prediction does not display a
similar decreasing trend. This is especially visible for the WIKI dataset in a
single-step setting, which displays an increasing tendency for the MRR with
increasing timestamps for the four best-performing methods. The results re�ect
the statement from Section 3.2, that multi-step prediction is more challenging,
and uncertainty accumulates with increasing number of forecasted timesteps,
as the models can only leverage information from their own forecasts. Thus,
benchmarking models for multi-step prediction against single-step prediction is
only fair for the �rst timestamp.

Validation Set Usage: In Figure 1(e), we show the MRR (in %) over snap-
shots in multi-step setting for TLogic and CyGNet7, when using the validation
set for testing (Section 3.4, option (b)) vs. not using the validation set for test-
ing (option (a)) for the dataset WIKI.8 The �gure displays a di�erence in MRR
between the two settings for each model, especially in the �rst two snapshots
with a di�erence in MRR of > 30 for TLogic. This di�erence is caused by the
information gap between the last training timestamp and the �rst testing times-
tamp. For the case of WIKI, the number of timestamps in the validation set is
numvalid = 11. The di�erence decreases with increasing timestamps, because,
due to the multi-step setting, there is also a rising information gap when feeding
the validation set. Thus, using the information from the validation set for testing
and avoiding the information gap is crucial for fair comparison among models.

Filter Settings: Figure 1(f) shows the MRR (in %) over snapshots in multi-
step setting, exemplary for CyGNet and RE-GCN for the dataset GDELT, com-
puted with raw, static, and time-aware �lter setting, as described in Section 3.19.
It reveals a large di�erence in MRR for static �lter setting, vs. raw setting or
time-aware �lter setting, especially for CyGNet. This is also visible for aggre-
gated results: Where CyGNet does not have the highest MRR scores on any
dataset for time-aware �lter settings (see Table 3), it has the highest MRR
scores on all �ve datasets in static �lter setting (see supplementary material).
The static �lter setting �lters out all triples that have ever appeared from the
corrupted triples, ignoring the time validity, and does not count a prediction of
these triples as error. Thus, for a given query, if a model predicts entities that
have appeared in this triple at an earlier timestep, this will not be considered
erroneous, even if the predicted fact is not true in the timestep of question. The
model will potentially be assigned a higher static �lter score than if it would
predict previously unseen facts. Thus, the static �lter setting favors models that
predict repeated facts.

7 The two models that run per default in multi-step setting, validation set option (a)
from Section 3.4.

8 The supplementary material shows results for YAGO, GDELT, ICEWS14, and
ICEWS18.

9 The supplementary material shows results for YAGO, WIKI, ICEWS14, and
ICEWS18.
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To summarize, we can see that no model shows the best results across all
datasets. This evidence remarks the importance of fairly comparing models on
di�erent benchmarks. We stressed the clear di�erences in result scores for single-
step and multi-step prediction. In addition, we pointed out that the usage of
the validation set during testing does lead to substantially higher test scores.
Further, we showed the signi�cant in�uence of the �lter setting used for score
computation.

Comparing Results of Original Papers and This Work: It is not
straightforward to compare the results from this study with the results reported
in the original papers, when it comes to assessing the state-of-the-art method
due to several reasons. Firstly, there exist variations in the evaluation settings
and inconsistencies in the evaluations across di�erent methods, as elaborated in
Section . Secondly, the original papers lack complete comparisons between all
methods, due to varying factors such as earlier or parallel publication times or
results reported only on subsets of datasets.

To illustrate the impact of our proposed evaluation protocol on the rank-
ing of compared methods, we show an example for CyGNet. The original pa-
per reports higher MRRs for CyGNet compared to RE-Net on the datasets
ICEWS14, ICEWS18, and GDELT, while lower MRRs on the datasets YAGO
and WIKI. However, when employing our evaluation protocol, CyGNet achieves
higher MRRs than RE-Net on YAGO and WIKI, but lower MRRs on all other
datasets. A plausible explanation for this disparity is the utilization of di�erent
�lter settings which, as highlighted in the preceding paragraph, notably in�u-
ences the obtained scores.

6 Conclusion

Summary: In this work, we examined the evaluation of TKG Forecasting
models. We uncovered and described inconsistencies that strongly in�uence the
experimental results and thus lead to distorted comparisons among models. To
address these problems, we formed a uni�ed evaluation protocol from reasonable
evaluation settings and re-evaluated state-of-the-art methods. We illustrated the
importance of a consistent evaluation by showing the e�ect of di�erent evalua-
tion settings on the results. Our work aims at establishing a uni�ed evaluation
protocol, stimulating discussions on the evaluation, and raising the community's
awareness of experimental issues, with the goal of advancing the research �eld
of TKG Forecasting.

Limitation of this study: Due to computational infeasibility, we could not
conduct multiple repeats for each experiment run10. Even with one repetition
per run, we experienced signi�cant computation times for many models, e.g.,
multiple days to weeks for the dataset GDELT; thus, multiple repetitions per
model and dataset were not possible. Adding multiple repetitions to the eval-

10 One experiment run: A one time training of a model with a given setting on a speci�c
dataset.
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uation would have further improved the robustness of our results, which are
nonetheless obtained under a uni�ed and reproducible protocol.

Future Work: In future work, we aim to extend the proposed evaluation
protocol to: First, evaluate the full predicted graph for methods that can predict
full graphs (e.g., RE-Net), instead of exclusively focusing on link prediction.
This could be based on graph similarity or computing a percentage of correctly
predicted triples. Second, evaluate the change of the predicted graph snapshots
over time to analyze if the predictions evolve and if they are able to capture time
information. This could be done by comparing the predictions at di�erent time
steps. Third, include more �ne-grained evaluation to answer what properties the
models learned and what they did not. This could, for example, be done using
the framework KGxBoard [30], which breaks down the performance measure
over individual data subsets.

Acknowledgements We warmly thank Federico Errica for his time and very
valuable feedback.
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Ethical Statement

While TKG Forecasting has the potential to enable predictions for complex and
dynamic systems, we argue that inconsistencies in experimental procedures and
evaluation settings can lead to distorted comparisons among models, and ulti-
mately, misinterpretation of results. Therefore, with our work, we want to high-
light the importance of transparency and reproducibility in scienti�c research, as
well as the importance of rigorous and reliable scienti�c practice. In this context
we have identi�ed inconsistencies in evaluation settings and provided a uni�ed
evaluation protocol. We ensure transparency by providing a URL to a GitHub
repository containing our evaluation code. Within this repository, we use forked
submodules to explicitly link to the original assets. Additionally, we report the
training details, such as hyperparameters, in the supplementary material of our
work.

While we have not focused on increasing the interpretability of individual
models, we acknowledge the importance of explainability and interpretability in
the �eld. Therefore, we note that among the compared models, xERTE [7] and
TLogic [21] address some aspects of explainability and interpretability.

We did not evaluate the predictions of existing models on bias and fairness
as it was out of scope for this work. However, we recognize that it is essential to
increase fairness in the comparison of TKG Forecasting models. Therefore, we
highlight inconsistencies and provide a uni�ed evaluation protocol to improve
comparability and fairness for existing models.

In terms of data collection and use, we used publicly available research
datasets for our evaluation. We did not use the data for pro�ling individuals,
and it does not contain o�ensive content. However, it is important to note that
even publicly available data can be subject to privacy regulations, and we have
taken measures to ensure that our data usage complies with applicable laws and
regulations.

As this study focuses purely on evaluation of existing models, it does not
induce direct risk. However, we recognize that TKG Forecasting models can have
real-world consequences, especially when applied in domains such as �nance and
healthcare. Therefore, as the results in Section 5 show, we want to stress again
that predictions can be unreliable and incomplete, and that these limitations
have to be acknowledged when using them for decision making.
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